
International Journal of Management, IT & Engineering
Vol. 8 Issue 7, July 2018,

ISSN: 2249-0558 Impact Factor: 7.119

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial

Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell’s

Directories of Publishing Opportunities, U.S.A

375 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Assessing Applicability of Software Evolution

based Aspect Mining Approach

Yasmin Shaikh

Sanjay Tanwani

 Abstract

 Aspect mining is the search of candidate aspects in

existing systems and isolating them from the system into

separately described aspects. The crosscutting concerns

are candidate aspects. Software Evolution Aspect Mining

(SEAM) mine candidate aspects from version history files

[1]. In order to assess the applicability of the SEAM in

aspect mining and validate the proposed algorithms,

version histories of legacy systems are identified for

further investigation. In this paper, SEAM is applied on

the version histories of two open source software namely,

JHotDraw and Weka written in Java. The simple and

complex aspect candidate aspects are identified for both

the systems and top ranked candidate aspects are listed in

the paper.

Keywords:

Keywords: Aspect

mining;

data mining;

 version history mining;

software evolution;

cross-cutting concern;

frequent pattern mining.

.

 Assistant Profeesor, International Institute of Professional Studies, Devi Ahilya

University, Takshshila Campus, Indore (M. P.), India

 Professor & Head, School of Computer Science & IT, Devi Ahilya University, Takshshila

Campus, Indore (M. P.), India

 ISSN: 2249-0558 Impact Factor: 7.119

376 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

1. Introduction

SEAM involves identifying possible aspect code modules by mining version history files [1].

The idea behind this approach is to analyze the history files to identify the files that have been

changed together frequently during the evolution of software. The files in frequent patterns are

visualized for structural relationship between them. The related files are then recommended as

candidate aspects. Two types of candidate aspects are reported – simple candidate aspects and

complex candidate aspects. A simple candidate aspect is a set of strongly change coupled files

with structural relationship between them. It is evident from the literature available on aspects

that crosscutting functionality cut across several files. Combining simple candidate aspects and

then obtaining structural relationship among them can find such candidate aspects.

In this paper, the method of data collection from the version archives of both the systems is

described. A brief introduction is included about the tools used for performing experimentation.

The tools that are used for experimentation include SPMF, CodePro Analytix, and FINT. SPMF

is used for frequent pattern mining. CodePro Analytix is used for visualizing structural

relationships. FINT is used as benchmarking tool for calculating the precision of experimental

results produced by SEAM. The results of frequent pattern mining are presented. The change

prone files identified from both the systems are listed. The change coupling visualizations for the

largest frequent patterns are presented. The top ranked candidate aspects are also listed for both

the systems.

2. Research Method

For thorough evaluation of SEAM, two open source projects JhotDraw and Weka are selected

and mined for crosscutting concerns in them. JhotDraw is selected as it is frequently used as an

aspect mining benchmark. The version history of JHotDraw is made available for research as

Concurrent Versions Systems (CVS) version archive [2]. CVS is a version control system used

by Open Source System (OSS) projects Weka is selected, as it is open source software with rich

development history [3]. Also, the version history of both the projects is maintained using

different versioning system namely CVS and Apache Subversion (SVN). SVN is widely used as

revision control system by open source software development community. It overcomes the

problems associated with CVS such as commit conflicts and loss of information about renamed

 ISSN: 2249-0558 Impact Factor: 7.119

377 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

or deleted files. Also, the migration from CVS data into SVN repository is easy using tool such

as cvs2svn The technique is evaluated for both types of versioning systems.

Table 1 shows few metrics about both the projects stated above. It includes the number of

distinct “.java” files present in the system, number of developers involved in the development

and maintenance of the system, the number of transactions extracted from version history, date of

first and last transactions in the version history. The data comprised for both the system involve

same period of time (i.e. around five years) and number of transactions are also similar.

 JhotDraw Weka

Java Files 504 885

Developers 9 6

Transactions 2698 2015

First Transaction 12-Oct-2000 17-Jul-2008

Last Transaction 25-Apr-2005 18-Jan-2013

Table 1: Transaction statistics from CVS of JHotDraw and SVN of Weka.

To analyze version archives, the data need to be preprocessed. Preprocessing directly affect the

quality of result. In SEAM, the data is extracted from version archives. In the present study, CVS

repository for JHotDraw available as a CVS dataset is considered [2]. The version files (java, v)

are downloaded from the source. Each “,v” file contain whole history of revisions over the

corresponding “.java” file along with the code of current release. For Weka, the change history

from the hosting website is downloaded [4]. The study of version history files of the software

from stable version 3.6.0 through stable version 3.6.9 is done. The history of Weka is maintained

using Apache subversion (SVN). SEAM takes into account only revisions of the file not the

source code, so the steps required for preprocessing the version history are described below:

Step I: Collect Data

The CVS repository includes revisions associated with each file whereas SVN includes revisions

associated with a version of complete software. Therefore, the methods for collecting data from

CVS and SVN approach slightly differ. For JHotDraw, the revision statements from each file are

extracted. The revision statements contain version number, timestamp, author, state and branch

fields. An example of JHotDraw CVS log-file is depicted in Figure 1. In the version history files

of Weka, only revision statements are written not the source code. The structure of record in the

file contains a record identifier, author who made the change, date & time of change, number of

 ISSN: 2249-0558 Impact Factor: 7.119

378 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

lines changed, path(s) to the files that have been changed, and comment indicating the change.

An example of Weka SVN log-file is depicted in Figure 2.

head 1.17; access;

symbols

 jhotdraw60b1-release:1.17 package_rename:1.15

 directory_rename:1.14 reorg_6x_split_initial:1.14

 MVC_PHASE1:1.14.0.2 NEW_ATTRIBUTES:1.13.0.2

 DNOYEB1_ALPHA-2:1.11.4.2 release_JHD54b1:1.11

 BUGFIX_670992:1.11.0.6 DNOYEB1_ALPHA-1:1.11.4.2

 dnoyeb1:1.11.0.4 repack:1.11.0.2

 Root_repack:1.11 Before_FigureVisitor:1.10

 JHotDraw_5-3:1.6 JHotDraw_5-2_merged:1.2

 JHotDraw_5-1_initial:1.1 start:1.1.1.1

 vendor:1.1.1; locks; strict;

comment @# @;

1.17

date 2004.02.01.14.35.11; author mrfloppy; state Exp;

branches;

next 1.16;

1.16

date 2004.01.27.16.27.25; author mtnygard; state Exp;

branches;

next 1.15;

Figure 1: An example of CVS log-file DrawApplet.java from JHotDraw.

r6220 | mhall | 2010-01-12 14:37:52 +1300 (Tue, 12 Jan 2010) | 1 line

Changed paths:

 M /branches/stable-3-6/weka/src/main/java/weka/core/version.txt

Updated for 3.6.2

--

 ISSN: 2249-0558 Impact Factor: 7.119

379 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

r6226 | fracpete | 2010-01-12 18:14:06 +1300 (Tue, 12 Jan 2010) | 1 line

Changed paths:

 M /branches/stable-3-6/weka/src/main/java/weka/core/RelationalLocator.java

 M /branches/stable-3-6/weka/src/main/java/weka/core/StringLocator.java

if src and dest differ in number of attributes/length is different, the error message now

states the two different numbers (helpful in figuring out in case this occurs)

Figure 2: An example of Weka SVN log-file.

Step II: Data Integration

The revision statements from the version history files of both the projects are extracted and

mapped into records. All the revision records are collected into single file. Table 2 and Table 3

shows the structure of records extracted from JHotDraw and Weka projects respectively.

Versio

n Date Time

Autho

r File

1.1 2000.10.12 14.57.07 jeckel applet\DrawApplet.java

1.1 2000.10.12 14.57.08 jeckel application\DrawApplication.java

1.1 2000.10.12 14.57.08 jeckel

contrib\ChopPolygonConnector.ja

va

1.1 2000.10.12 14.57.08 jeckel contrib\DiamondFigure.java

1.1 2000.10.12 14.57.08 jeckel contrib\PolygonFigure.java

1.1 2000.10.12 14.57.08 jeckel contrib\PolygonHandle.java

1.1 2000.10.12 14.57.08 jeckel contrib\PolygonScaleHandle.java

1.1 2000.10.12 14.57.08 jeckel contrib\PolygonTool.java

1.1 2000.10.12 14.57.08 Jeckel contrib\TriangleFigure.java

1.1 2000.10.12 14.57.08 Jeckel

contrib\TriangleRotationHandle.ja

va

Table 2: Mapping of revision statements from “,v” files of JHotDraw into records.

RecI

D Date Time Author File

r4462 7/17/200 9:37:03 mhall classifiers/functions/Logistic.java

 ISSN: 2249-0558 Impact Factor: 7.119

380 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

8

r4463

7/19/200

8 20:40:35

fracpete

filters/unsupervised/attribute/Replace

MissingValues.java

r4466

7/29/200

8 10:29:12 mhall core/converters/ArffLoader.java

r4466

7/29/200

8 10:29:12 mhall core/converters/C45Loader.java

r4466

7/29/200

8 10:29:12 mhall core/converters/CSVLoader.java

r4466

7/29/200

8 10:29:12 mhall core/converters/LibSVMLoader.java

r4466

7/29/200

8 10:29:12 mhall

core/converters/SerializedInstancesLo

ader.java

r4466

7/29/200

8 10:29:12 mhall core/converters/XRFFLoader.java

r4468

7/30/200

8 9:21:27 mhall classifiers/bayes/DMNBtext.java

Table3: Mapping of revision statement of Weka SVN into records

Definition 1 (Transaction): A transaction T is a pair (t, f). Each pair (t, f) represents the

timestamp (t) of the change made to source file f.

To avoid ambiguities, a file is identified with its full signature, including package and class name

(if any).

Step III Map co-changing files into transactions

CVS does not keep track of which files have been changed in conjunction in one commit

operation whereas SVN includes the set of files that were changed together in one commit. To

get the information about files that were changed together from CVS repository, the files are

grouped into transaction. To define the time proximity, a time window of one day is selected i.e.

the files that were changed on the same date are grouped into transaction. In case of version

 ISSN: 2249-0558 Impact Factor: 7.119

381 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

history data extracted from SVN, the files that are included in single commit are grouped into

transaction

Also, to apply frequent pattern mining algorithm, the dataset must be in the form of transaction

where the order of transactions determines the temporal relationship. To construct a transaction

dataset from revision statements of CVS Algorithm 1 is used.

ALGORITHM 1: MAP CO-CHANGING FILES INTO TRANSACTIONS

Input: RR: = set of revision statements having field1 containing date of revision; field2 containing

the name of the source file being revised.

RR is sorted on date field.

τ max: = 1 Day //Time window

Output: The transaction database D

1. Initialize d := start_date;

 ld: = last_date;

2. current_record: = 1

3. Read first revision record r from RR

4. do while d!= ld

3. if field1 of r = d

4. append field2 of r in D at current_record

5. read next record

6. else

7. d: = field1 of r

8. current_record: = current_record +1

10. append field2 of r in D at current_record

11. read next record

12. Output D, the transaction database.

Given a set of revision statements and size of the window, Algorithm 1 returns a transaction data

set by grouping revision records on the basis of time window.

 ISSN: 2249-0558 Impact Factor: 7.119

382 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

3. Experimantation and Results

3.1 System Configuration

All the experiments are performed on 2.53 GHz intel
®
 CORE

TM
 i3, running 32-bit Windows 7,

configured with 3GB RAM. The proposed algorithm in this paper is implemented in Java. The

tools that are used for generating frequent patterns (i.e. SPMF) and structural relationships

(CodePro) are also implemented in Java.

3.2 Tool for Frequent Pattern Mining

SPMF tool is used for mining frequent patterns using FPGrowth algorithm [5]. SPMF is an open-

source data-mining library written in Java for pattern mining. The source code of each algorithm

can be integrated in other Java software. Also, SPMF can be used as a standalone program with a

simple user interface or from the command line.

The input of FPGrowth is a transaction database (also called as binary context) and a threshold

named minsup (minimum support value between 0 and 100 %). In transaction database, an item

is represented by a positive integer. A transaction is a line in the text file. In each line

(transaction), items are separated by a single space. The output of FPGrowth is a text file with

each frequent itemset annotated with its support. The support of an itemset is how many times

the itemset appears in the transaction database.

The preprocessed transaction dataset of JhotDraw and Weka includes file names (full path to file)

as items. To apply the pattern-mining algorithm using SPMF, the file names are mapped to

positive integers. The output is generated in the form of positive integers that are mapped to file

names and results are interpreted.

3.3 Tool for Generating Structural Relationship

CodePro Analytix tool is used for visualizing structural relationship among strongly change

coupled files [6]. CodePro Analytix is the premier Java software testing tool for Eclipse

developers who are concerned about improving software quality and reducing developments

costs and schedules. The key features of tool include code analysis, project metrics computation,

JUnit test generation, code coverage analysis, similar code analysis and dependency analysis.

 ISSN: 2249-0558 Impact Factor: 7.119

383 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

In the current research, the dependency analysis is performed using CodePro Analytix. It

analyzes and visually depicts the dependencies between projects, packages, and types.

Dependencies are displayed in a graphical format. The elements visible at each level of

granularity (projects, packages, or types) are displayed as rectangles labeled by both an icon

indicating the kind of element being viewed and the name of the element. Dependencies between

the elements are displayed as directed lines (lines with arrows at either one end or both). The

elements are divided into three groups, which are color coded for ease of recognition. The

number of dependencies between nodes is displayed as labels on the connecting lines. If the line

is bi-directional, the number of dependencies in both directions will be displayed, separated by a

slash ("/").

3.4 Software Evolution based Aspect Mining for JHotDraw

3.4.1 Frequent pattern Generation for JHotDraw

The frequent pattern mining algorithm is applied using SPMF tool to the preprocessed version

history dataset of JHotDraw. Table 4 describes the parameters used in algorithm for generating

frequent patterns and statistics about the patterns generated at different levels of σ. The first

column lists the minimum support percent (σ). The second column presents the number of

frequent patterns generated with the specified σ. The third column indicates the number of

frequently appearing files that are generated from the extracted frequent patterns. These files are

frequent patterns of size one. The fourth column shows the size of maximal frequent set(s)

generated with the specified σ.

The value of σ is varied so that the reasonable number of files gets involved in frequent patterns.

The value of σ is varied within 10% to 20% range. Good numbers of patterns are generated at

10% threshold value. Very few patterns are generated at 15% and 20% threshold value. The tool

failed to generate the results for σ less than 10%.

A moderate value of threshold σ is selected. If the threshold value is kept overly high, very few

patterns are generated. If the threshold value is kept very low, then large numbers of patterns are

generated. The resulting patterns contain large number of redundant sub-patterns. The precision

of results may fall with large set of frequent patterns as only few patterns are actually correct.

 ISSN: 2249-0558 Impact Factor: 7.119

384 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Min.

Support σ

No. of

frequent

patterns

No. of

files

Size of

Largest

Pattern

8 -- -- --

10 481 57 7

15 28 19 4

20 9 7 3

Table 4 : Statistics of frequent patterns extracted from JHotDraw and Weka.

3.4.2 Performance Analysis of FP-Growth Algorithm for JHotDraw

The statistics generated by SPMF tool includes the approximate memory and time consumed by

the algorithm. Figure 3 shows a bar chart about memory and time consumed by algorithm to

generate frequent patterns. The memory consumed by the algorithm is around 52MB to 55MB.

The maximum time taken by algorithm is for support percent 10 since most number of patterns

are generated at this level. The time taken at 15 and 20 percent support is relatively low. Thus, it

can be concluded here that the memory requirement does not vary greatly at these support

percentages but time requirements vary with support percentage as number of frequent patterns

also vary.

Figure 3: Memory and time taken by FPGrowth algorithm at different support percentages for

JHotDraw.

3.4.3 Change Prone Files for JHotDraw

Change prone files are the files that have been changed frequently during the evolution of

software. On applying frequent pattern mining algorithm to the version history files, frequent

patterns of size 1 to 7 (for JHotDraw) are generated. The frequent patterns of size one include the

change prone files. Table 5 shows the change prone files with their support count for JHotDraw.

0

50

100

10 15 20

A
xi

s
Ti

tl
e

Support Percentage

Memory in MB

Time in ms

 ISSN: 2249-0558 Impact Factor: 7.119

385 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

The experimental results show that in JHotDraw only 16% of total number of files are change

prone files and are involved in maintenance more often. Thus, it is concluded that a very less

percentage of software code is involved in maintenance activity. The two files that are changed

most frequently are application\DrawApplication.java and standard\StandardDrawingView

.java. The class DrawApplication defines a standard presentation for standalone drawing editors.

The class StandardDrawingView presents a standard drawing view. Both the classes are related

to GUI and are also strongly change coupled as shown in next section.

Change Prone Files Support Count

application\DrawApplication.java 30

standard\StandardDrawingView.java 30

contrib\MDIDesktopPane.java 16

samples\javadraw\JavaDrawApp.java 16

applet\DrawApplet.java 15

figures\TextFigure.java 15

contrib\MDI_DrawApplication.java 14

contrib\GraphicalCompositeFigure.java 13

contrib\TextAreaFigure.java 13

standard\CreationTool.java 13

standard\StandardDrawing.java 13

standard\AbstractTool.java 12

figures\LineConnection.java 11

samples\pert\PertApplication.java 11

standard\ChangeConnectionEndHandle.java 11

util\Geom.java 11

contrib\CustomSelectionTool.java 10

framework\DrawingChangeListener.java 10

standard\DeleteCommand.java 10

standard\CompositeFigure.java 10

standard\ChangeConnectionHandle.java 10

standard\SelectionTool.java 10

 ISSN: 2249-0558 Impact Factor: 7.119

386 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

util\StorableInput.java 10

contrib\dnd\DragNDropTool.java 9

contrib\html\HTMLTextAreaFigure.java 9

contrib\MiniMapView.java 9

contrib\zoom\ZoomDrawingView.java 9

figures\ImageFigure.java 9

figures\PolyLineFigure.java 9

framework\Figure.java 9

samples\nothing\NothingApp.java 9

standard\AbstractFigure.java 9

standard\ConnectionTool.java 9

standard\ChangeAttributeCommand.java 9

standard\PasteCommand.java 9

standard\ToolButton.java 9

contrib\JScrollPaneDesktop.java 8

contrib\StandardLayouter.java 8

contrib\TextAreaTool.java 8

figures\AttributeFigure.java 8

figures\GroupFigure.java 8

figures\FigureAttributes.java 8

figures\TextTool.java 8

figures\RoundRectangleFigure.java 8

samples\javadraw\JavaDrawViewer.java 8

samples\net\NetApp.java 8

standard\BringToFrontCommand.java 8

standard\AbstractCommand.java 8

standard\AbstractHandle.java 8

samples\pert\PertDependency.java 8

standard\DecoratorFigure.java 8

standard\CutCommand.java 8

standard\ChangeConnectionStartHandle.java 8

 ISSN: 2249-0558 Impact Factor: 7.119

387 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

standard\FigureTransferCommand.java 8

standard\SelectAreaTracker.java 8

standard\QuadTree.java 8

util\Iconkit.java 8

Table 5: Change prone files for JHotDraw

3.4.4 Change Coupling Visualization for JHotDraw

Change coupling between files indicates that when one file is changed then the change coupled

file is also required to be changed. The frequent patterns of size two and more denote the change

coupling between members of pattern. The largest size of frequent patterns generated for

JHotDraw is 7. There are 57 change prone files. Thus, it is concluded that very few number of

files are associated with change coupling relationship over the period of evolution. The change

coupling graphs for largest size pattern for JHoDraw is presented in Figure 4.

Figure 4: Change coupling relationships between files of largest frequent pattern for JHotDraw.

 Legend

A:

filters/unsupervised/instance/

subsetbyexpression/Scanner.java

B: gui/AttributeListPanel.java

C: gui/AttributeSummaryPanel.java

D: gui/beans/AssociatorCustomizer.java

E: gui/beans/BatchClassifierEvent.java

F: gui/beans/ClassAssigner.java

G: gui/beans/ClassifierCustomizer.java

H: gui/beans/CostBenefitAnalysis.java

A

B
C

F

D

E

H

G

 ISSN: 2249-0558 Impact Factor: 7.119

388 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

3.4.5 Visualization of Structural Relationships of Strongly Change Coupled Files for

JHotDraw

The strongly change coupled files of JHotDraw are visualized for structural relationships among

them. The dependency graphs are generated for strongly change coupled files in frequent

patterns of size two or more. First the graph is generated for largest pattern. Initially, a high level

view of dependency graph is generated at package level for JHotDraw. Figure 5 shows a

dependency graph at package level of JHotDraw generated using CodePro . The granules (here

packages) are displayed as rectangles with an icon for kind of element. Dependencies between

the elements are displayed as directed lines (lines with arrows at either one end or both).

The elements are divided into three groups, which are color coded for ease of recognition. The

first group contains internal elements that are directly selected for analysis. By default, internal

elements are displayed in black. The second group contains external elements, which are

elements that were neither selected nor contained in selected elements, but that are referenced by

them. By default, external elements are displayed in gray. The third group is a subset of the

internal elements; those that are elements of a strongly change coupled components. By default

they are displayed in red. The thickness of each line further indicates whether the dependency is

bi-directional or not. The number of dependencies between nodes is displayed as labels on the

connecting lines. If the line is bi-directional, the number of dependencies in both directions will

be displayed, separated by a slash ("/").

When a dependency analysis is being viewed, double clicking on some portion of the graph can

access finer levels of granularity. Double clicking on an element will display a graph containing

only those elements within the element that was clicked on and the elements that are dependent

on the clicked element. Thus, the structural relationship is analyzed at file level. On the basis of

such detailed analysis, candidate aspects are identified.

 ISSN: 2249-0558 Impact Factor: 7.119

389 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Figure 5: Visualization of structural relationship for JHotDraw using dependency graph

generated using CodePro plug-in for Eclipse.

3.4.6 Candidate Aspects for JHotDraw

The frequent patterns are generated using frequent pattern mining algorithm.The strongly

changed coupled files and simple candidate aspects are generated using the algorithms described

in [1]. These simple candidate aspects are then visualized for structural relationships. The

candidate aspects are marked true or false manually on the basis of structural relationship graphs.

Manual inspection is required to filter out the redundant concepts and to group together similar

concepts. The simple candidates are then combined and complex candidate aspects are generated

using algorithm described in [1]. Out of 481 frequent patterns, most of the patterns are

redundant, so they got pruned. 26 simple candidate aspects and 14 complex candidate aspects are

identified after applying the algorithms for identifying simple and complex candidate aspects.

Top 11 candidate aspects are presented in Table 6. Candidate aspect #4 and candidate aspect #6

are complex candidate aspects. The remaining candidate aspects are simple candidate aspects.

 ISSN: 2249-0558 Impact Factor: 7.119

390 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Candidate Aspect # 1: Draw and

View Figure

Candidate Aspect # 2: Edit and View

Figure

application\DrawApplication.java application\DrawApplication.java

figures\TextTool.java standard\AbstractTool.java

framework\Figure.java standard\BringToFrontCommand.java

standard\AbstractFigure.java standard\PasteCommand.java

standard\CompositeFigure.java standard\StandardDrawingView.java

standard\DecoratorFigure.java standard\DeleteCommand.java

standard\StandardDrawingView.java standard\CutCommand.java

Candidate Aspect # 3: Drawing

and Viewing Tools

Candidate Aspect # 4: Manage Changes

application\DrawApplication.java application\DrawApplication.java

contrib\MDI_DrawApplication.java framework\DrawingChangeListener.java

standard\AbstractTool.java standard\StandardDrawing.java

standard\StandardDrawingView.java standard\StandardDrawingView.java

Candidate Aspect # 5: Create and

Store New Figure

Candidate Aspect # 6: View Figure

Details

application\DrawApplication.java application\DrawApplication.java

standard\CreationTool.java standard\SelectionTool.java

standard\StandardDrawingView.java contrib\CustomSelectionTool.java

util\StorableInput.java standard\StandardDrawingView.java

Candidate Aspect # 7: Manage

Tool Buttons

Candidate Aspect # 8: Connect Figure

and Text

application\DrawApplication.java application\DrawApplication.java

standard\CreationTool.java figures\LineConnection.java

standard\StandardDrawingView.java figures\TextFigure.java

standard\ToolButton.java standard\AbstractFigure.java

Candidate Aspect # 9: Move

Figure standard\ChangeConnectionEndHandle.java

standard\AbstractFigure.java standard\ChangeConnectionHandle.java

standard\CompositeFigure.java standard\ConnectionTool.java

 ISSN: 2249-0558 Impact Factor: 7.119

391 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

standard\DecoratorFigure.java Candidate Aspect # 11: Persistence

figures\AttributeFigure.java figures\AttributeFigure.java

figures\ImageFigure.java figures\ImageFigure.java

figures\GroupFigure.java figures\GroupFigure.java

figures\FigureAttributes.java figures\FigureAttributes.java

figures\PolyLineFigure.java figures\PolyLineFigure.java

figures\RoundRectangleFigure.java figures\RoundRectangleFigure.java

Candidate Aspect # 10: Draw

Geometric Shape figures\LineConnection.java

application\DrawApplication.java figures\TextFigure.java

standard\StandardDrawingView.java standard\AbstractFigure.java

util\Geom.java standard\DecoratorFigure.java

Table 6: Top ranked candidate aspects for JHotDraw.

3.5 Software Evolution based Aspect Mining for Weka

3.5.1 Frequent pattern Generation for Weka

The frequent pattern mining algorithm is applied to the preprocessed version history dataset of

Weka. Table 7 describes the parameters used in algorithm for generating frequent patterns. The

first column lists the minimum support (σ) percent. The second column presents the number of

frequent patterns generated with the specified σ. The third column indicates the number of

frequently appearing files that are generated from the extracted frequent patterns.

These files are frequent patterns of size one. The fourth column contains the size of largest

(maximal) frequent pattern. The value of σ is varied so that the reasonable number of files gets

involved in frequent patterns. The support is varied within 1% to 3% range since no results are

generated above this threshold. Good numbers of results are generated at 1% threshold value.

Min. Support

σ

No. of

frequent

patterns

No. of

files

Size of

Largest

Pattern

0.8 8679 119 14

1 384 68 8

2 14 14 2

3 5 5 2

Table 7: Statistics from frequent patterns extracted for Weka.

 ISSN: 2249-0558 Impact Factor: 7.119

392 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

3.5.2 Performance Analysis of FP-Growth Algorithm for Weka

Figure 6 shows a bar chart about memory and time consumed by algorithm to generate frequent

patterns. The memory consumed by the algorithm is between 3MB to 7MB. The maximum time

taken by algorithm is for support percent 0.8 since most number of patterns are generated at this

level. The time taken at 1, 2, and 3 percent support is relatively low. Thus, it can be concluded

here that the memory requirement does not vary greatly at these support percentages but time

requirements vary with support percentage as number of frequent patterns also vary greatly.

Also, the time taken is in milliseconds, the frequent patterns are generated in very short period of

time.

3.5.3 Change Prone Files for Weka

Change prone files are the files that have been changed frequently during the evolution of

software. On applying frequent pattern mining algorithm to the version history files, the frequent

patterns of size 1 to 8 are generated.

Figure 6: Memory and time taken by FPGrowth algorithm at different support percentages for

weka.

The frequent patterns of size one include the change prone files. Table 8 shows the change prone

files for Weka. The experimental results show that only 13% of total number of files in Weka are

change prone files. Thus, it is concluded that a limited portion of software code is involved in

maintenance activity.

The file gui/AttributeListPanel.java is changed most frequently during the evolution of software.

This class creates a panel that displays the attributes contained in a set of instances, letting the

user select a single attribute for inspection. Before applying any data mining algorithm using

0

20

40

60

80

0.8 1 2 3

Support Percentage

Memory in MB

Time in ms

 ISSN: 2249-0558 Impact Factor: 7.119

393 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

Weka, the user has to select the attributes. Therefore, this class is related with all the data mining

techniques that are applicable using Weka.

The gui/beans/ CostBenefitAnalysis.java is the second most frequently modified file. This is a

Java bean that aids in analyzing cost/benefit tradeoffs. Again, this analysis is performed on

application of each algorithm. Also, it is evident from set of frequent patterns that these classes

have high change coupling relationship with other change prone classes. Thus, it can be

concluded here that the classes that are related to more number of classes are change prone files.

3.5.4 Change Coupling Visualization for Weka

Change coupling between files indicates that when one file is changed then the change coupled

file is also required to be changed. The frequent patterns of size two and more denote the change

coupling between members of pattern. The largest size of frequent patterns generated for Weka is

8.

Change Prone Files Support

Count

gui/AttributeListPanel.java 28

gui/beans/CostBenefitAnalysis.java 17

gui/experiment/GeneratorPropertyIteratorPanel.java 16

gui/beans/ClassValuePicker.java 12

gui/AttributeSummaryPanel.java 11

clusterers/SimpleKMeans.java 10

gui/beans/IncrementalClassifierEvaluatorCustomizer.java 10

gui/explorer/Messages.java 10

gui/experiment/HostListPanel.java 10

gui/beans/CrossValidationFoldMaker.java 9

classifiers/trees/DecisionStump.java 8

core/converters/LibSVMLoader.java 8

gui/beans/ClassifierCustomizer.java 8

gui/experiment/RunPanel.java 8

gui/sql/event/ResultChangedEvent.java 7

 ISSN: 2249-0558 Impact Factor: 7.119

394 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

gui/sql/ResultSetHelper.java 7

classifiers/bayes/ComplementNaiveBayes.java 7

classifiers/bayes/net/GUI.java 7

clusterers/MakeDensityBasedClusterer.java 7

gui/beans/BeanConnection.java 7

gui/beans/DataVisualizer.java 7

gui/beans/Startable.java 7

attributeSelection/ClassifierSubsetEval.java 6

classifiers/bayes/NaiveBayesMultinomialUpdateable.java 6

classifiers/trees/BFTree.java 6

clusterers/forOPTICSAndDBScan/DataObjects/EuclideanDataObject

.java 6

gui/AttributeVisualizationPanel.java 6

gui/beans/ClassAssigner.java 6

gui/beans/StructureProducer.java 6

gui/beans/KnowledgeFlow.java 6

gui/visualize/MatrixPanel.java 6

core/AllJavadoc.java 5

clusterers/forOPTICSAndDBScan/OPTICS_GUI/OPTICS_Visualize

r.java 5

filters/unsupervised/attribute/InterquartileRange.java 5

gui/arffviewer/ArffViewerMainPanel.java 5

filters/unsupervised/instance/subsetbyexpression/Scanner.java 5

gui/beans/ClassValuePickerCustomizer.java 5

gui/beans/AssociatorCustomizer.java 5

filters/unsupervised/attribute/NumericTransform.java 5

gui/experiment/ExperimenterDefaults.java 5

gui/experiment/Experimenter.java 5

gui/beans/FlowRunner.java 5

gui/graphvisualizer/Messages.java 5

gui/experiment/SimpleSetupPanel.java 5

 ISSN: 2249-0558 Impact Factor: 7.119

395 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

gui/explorer/AssociationsPanel.java 5

gui/AttributeSummaryPanel.java 4

gui/sql/InfoPanelCellRenderer.java 4

classifiers/functions/Winnow.java 4

classifiers/rules/Prism.java 4

clusterers/sIB.java 4

filters/unsupervised/attribute/AddNoise.java 4

filters/unsupervised/attribute/NominalToBinary.java 4

experiment/AveragingResultProducer.java 4

experiment/InstanceQuery.java 4

experiment/Experiment.java 4

gui/AttributeSelectionPanel.java 4

filters/unsupervised/instance/SubsetByExpression.java 4

gui/beans/BatchClassifierEvent.java 4

gui/boundaryvisualizer/Messages.java 4

gui/beans/GraphViewer.java 4

gui/beans/InstanceStreamToBatchMaker.java 4

gui/beans/ClustererCustomizer.java 4

gui/beans/CrossValidationFoldMakerCustomizer.java 4

gui/beans/PredictionAppenderCustomizer.java 4

gui/SimpleCLIPanel.java 4

gui/experiment/OutputFormatDialog.java 4

gui/treevisualizer/TreeDisplayEvent.java 4

gui/streams/InstanceLoader.java 4

Table 8: Change prone files for Weka.

Legend

A: application\DrawApplication.java

 ISSN: 2249-0558 Impact Factor: 7.119

396 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

There are 68 change prone files. Thus, it is

concluded that very few number of files are

associated with change coupling relationship over

the period of evolution. The change coupling

graphs for largest size pattern for Weka is shown

in Figure 7.

Figure 7: Change coupling relationships for largest frequent pattern for Weka

The change coupling relationship graph for Weka shows that the file B

(gui/AttributeListPanel.java) is the file that has been changed the most during the evolution of

software. Similarly, the file E (gui/beans/ BatchClassifier Event .java) has been changed least

number of times during evolution of software. The files B-C, B-H, and B-G are most strongly

change change coupled files. The files A-B, A-D, A-G, A-H, B-D, C-F, C-H, D-G, D-H, F-H, and

G-H are moderately change coupled. The remaining file sets are least change coupled files

among the set of files.

3.5.5 Visualization of Structural Relationships among Strongly Change Coupled Files for

Weka

The strongly change coupled files generated in previous step are visualized for structural

relationships among them. The dependency graphs are generated using CodePro tool for strongly

B: figures\TextTool.java

C: framework\Figure.java

D: standard\AbstractFigure.java

E: standard\CompositeFigure.java

F: standard\DecoratorFigure.java

G: standard\StandardDrawingView.java

A

G B

C D

E
F

 ISSN: 2249-0558 Impact Factor: 7.119

397 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

change coupled files in frequent patterns of size two or more. First the graph is generated for

largest pattern generated for. Similarly, the dependency graph for second largest pattern (and so

on) is generated with pruning of proper subsets at each level. Figure 8 shows dependency graph

for the largest pattern in Weka at class level.

Figure 8: Visualization of structural relationship using dependency graph generated using

CodePro plug-in for Eclipse

3.5.6 Candidate Aspects for Weka

The frequent patterns for Weka are generated using frequent pattern mining algorithm. The

strongly changed coupled files, simple candidate aspects, and complex candidate aspects are

generated similarly as generated for JHotDraw in Section 3.4.6. Out of 384 frequent patterns,

most of the patterns are redundant, so they got pruned. 29 simple candidate aspects and 10

complex candidate aspects are identified after applying the algorithms for identifying simple and

complex candidate aspects. Top 7 candidate aspects are presented in Table 9. Candidate aspect #

5 is complex candidate aspect and remaining aspects are simple candidate aspects.

Candidate Aspect # 1: Attribute

Visualization and Selection

Candidate Aspect # 2: GUI

Customization

filters/unsupervised/instance/subsetbyexpress

ion/Scanner.java gui/beans/AssociatorCustomizer.java

gui/AttributeListPanel.java gui/beans/ClassifierCustomizer.java

 ISSN: 2249-0558 Impact Factor: 7.119

398 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

gui/AttributeSummaryPanel.java gui/beans/DataVisualizer.java

gui/beans/ClassAssigner.java

Candidate Aspect # 4: Experimenter

Console Setting

Candidate Aspect # 3: Message Window gui/experiment/Experimenter.java

gui/boundaryvisualizer/Messages.java

gui/experiment/ExperimenterDefaults.jav

a

gui/experiment/OutputFormatDialog.java

gui/experiment/GeneratorPropertyIterator

Panel.java

gui/explorer/Messages.java gui/experiment/HostListPanel.java

gui/graphvisualizer/Messages.java

Candidate Aspect # 6: Tradeoff

Analysis

Candidate Aspect # 5: Classification

Settings gui/beans/CostBenefitAnalysis.java

gui/AttributeListPanel.java

Candidate Aspect #7: Subset

Evaluator

gui/AttributeSummaryPanel.java

filters/unsupervised/instance/subsetbyexp

ression/Scanner.java

gui/beans/CrossValidationFoldMaker.java

gui/beans/IncrementalClassifierEvaluatorCus

tomizer.java

gui/beans/ClassValuePicker.java

Table 9: Candidate aspects for Weka.

4. Conclusion

A systematic technique to collect data from version archives is proposed in this paper. Also, a

detailed data preprocessing approach is introduced. An algorithm is proposed to map the version

archive data in the form of transactions. This is especially useful when the user wants to apply

different data mining techniques for mining version archives. Change prone files are extracted

from version history of software using data mining technique. These change prone files help in

identifying the code portions modified most frequently. These files can be refactored to get more

maintainable, portable, evolvable, and testable code modules. Co-changing files (change coupled

 ISSN: 2249-0558 Impact Factor: 7.119

399 International journal of Management, IT and Engineering

http://www.ijmra.us, Email: editorijmie@gmail.com

files) are extracted from version history of software. These change-coupling relationships are

determined by visualizing frequent patterns on the basis of the support counts of files in the

frequent pattern. The results are extremely useful in guiding software maintenance process and

enhance maintainability of software. The results produced by SEAm for JHotDraw and Weka

shows that the approach can be applied easily to any project with rich development history

maintained in the form of CVS or SVN.

References

[1] Shaikh, Y., & Tanwani, S. (2017). Software Evolution-based Aspect Mining: A Novel

Approach. International Journal of Data Mining and Emerging Technologies, 7(2), 97-106.

[2] M. Monperrus, and M. Martinez, CVS-Vintage: A Dataset of 14 CVS Repositories of

Java Software, http://hal.archives-ouvertes.fr/hal-00769121, 2012.

[3] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, “The WEKA

Data Mining Software: An Update”, SIGKDD Explorations, Vol. 11, no. 1, 2009.

[4] https://www.cs.waikato.ac.nz/~ml/weka/history.html

[5] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Sotlani, C. Wu., and V. Tseng, “SPMF:

a Java Open-Source Pattern Mining Library”, Journal of Machine Learning Research (JMLR),

vol. 15, pp. 3389-9993, 2014. http://www.philippe-fournier-viger.com/SPMF/index.php, 2014.

[6] CodePro, Source Code Testing and Visualization Eclipse Plug-in,

https://developers.google.com/java-dev-tools/codepro/doc / analytix

https://www.cs.waikato.ac.nz/~ml/weka/history.html

